skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Jiaju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While large vision-language models can generate motion graphics animations from text prompts, they regularly fail to include all spatio-temporal properties described in the prompt. We introduce MoVer, a motion verification DSL based on first-order logic that can check spatio-temporal properties of a motion graphics animation. We identify a general set of such properties that people commonly use to describe animations (e.g., the direction and timing of motions, the relative positioning of objects, etc.). We implement these properties as predicates in MoVer and provide an execution engine that can apply a MoVer program to any input SVG-based motion graphics animation. We then demonstrate how MoVer can be used in an LLM-based synthesis and verification pipeline for iteratively refining motion graphics animations. Given a text prompt, our pipeline synthesizes a motion graphics animation and a corresponding MoVer program. Executing the verification program on the animation yields a report of the predicates that failed and the report can be automatically fed back to LLM to iteratively correct the animation. To evaluate our pipeline, we build a synthetic dataset of 5600 text prompts paired with ground truth MoVer verification programs. We find that while our LLM-based pipeline is able to automatically generate a correct motion graphics animation for 58.8% of the test prompts without any iteration, this number raises to 93.6% with up to 50 correction iterations. Our code and dataset are at https://mover-dsl.github.io. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Motion graphics videos are widely used in Web design, digital advertising, animated logos and film title sequences, to capture a viewer's attention. But editing such video is challenging because the video provides a low-level sequence of pixels and frames rather than higher-level structure such as the objects in the video with their corresponding motions and occlusions. We present amotion vectorizationpipeline for converting motion graphics video into an SVG motion program that provides such structure. The resulting SVG program can be rendered using any SVG renderer (e.g. most Web browsers) and edited using any SVG editor. We also introduce aprogram transformationAPI that facilitates editing of a SVG motion program to create variations that adjust the timing, motions and/or appearances of objects. We show how the API can be used to create a variety of effects including retiming object motion to match a music beat, adding motion textures to objects, and collision preserving appearance changes. 
    more » « less
  3. null (Ed.)